Tandem Enamine Michael Additions to 4-(Mesyloxy)cyclopentenones: Bridged Tricyclic Skeletons via a Net [3+2] Construction ${ }^{1}$

G. U. Gunawardena, Atta M. Arif, ${ }^{\dagger}$ and F. G. West*
Department of Chemistry, University of Utah
Salt Lake City, Utah 84112

Received November 18, 1996
Biologically important bridged or fused bicyclic systems containing medium-sized rings are found widely in nature, and development of new synthetic approaches to these skeletons continues to be an important goal. ${ }^{2}$ We report here a new method for the direct, convergent, and stereoselective formation of tricyclo[5.3.1.0 ${ }^{2,6}$]undecan-11-ones and tricyclo[5.4.1.0 ${ }^{2,6}$]-dodecan-12-ones from 4-(mesyloxy)cyclopentenones and pyrrolidine enamines of cyclic ketones. These products may function as useful intermediates in the synthesis of several important ring systems: selective cleavage of the zero bridge or the one-carbon bridge should furnish bicyclo[5.3.1]undecanes, bicyclo[5.3.0]decanes, or bicyclo[6.3.0]undecanes (Scheme 1). ${ }^{3}$ The one-pot process described here is equivalent to α, α^{\prime} alkylation of an enamine by both enone double bonds of a substituted cyclopentadienone, and functions as a $[3+2],{ }^{4}$ as well as a formal $[5+2]$ or $[6+2]$ construction.

We have found that 4 -(mesyloxy)cyclopentenones undergo vicinal substitution with heteroatom nucleophiles and malonate. ${ }^{5}$ The net result is introduction of the nucleophile at the carbon adjacent to that which bore the mesylate along with migration of the double bond to the more substituted C-4/C-5 position, presumably through an addition/elimination pathway. In an effort to expand the range of carbon nucleophiles, we were drawn to enamines as simple and well-precedented Michael donors. ${ }^{6}$ Preliminary studies were carried out with the morpholine enamine of cyclohexanone (1a) and mesylates $2 \mathbf{2}-\mathbf{c}$

[^0]
Scheme 1

(eq 1). Reaction at ambient temperature led after aqueous

workup to "pseudocine" adducts $\mathbf{3 a}-\mathbf{c}$ in fair to good yield. Importantly, the product in each case was formed with complete diastereoselectivity. ${ }^{7}$ While the relative stereochemistry of the two adjacent centers of $\mathbf{3}$ was difficult to determine directly, it is assumed to be as shown given the rigorous assignment of the related tricyclic structure $\mathbf{4 a}$ (vide infra).

The presence of a new cyclopentenone in $\mathbf{3}$ suggested the possible intervention of a second conjugate addition in an intramolecular sense. When 1a was stirred with 2a in refluxing acetonitrile, an additional product was isolated in trace amounts and assigned tricyclic structure $\mathbf{4 a}$ (eq 2). In order to facilitate

in situ enamine regeneration at the α^{\prime} position, replacement of the morpholino moiety with a pyrrolidino group was examined. ${ }^{8-10}$ Addition of 1-(1-pyrrolidino)cyclohexene $\mathbf{1 b}$ (1.5 equiv) to a solution of $\mathbf{2 a}$ in acetonitrile led to rapid consumption of starting material upon heating at reflux (eq 2). Continued heating for 24 h in the presence of $\mathrm{Et}_{3} \mathrm{~N}$ (1 equiv) ${ }^{11}$ gave after hydrolysis tricycle $\mathbf{4 a}$ in 60% yield and as a single diastere-

[^1]Table 1. $[3+2]$ Annulation with Pyrrolidine Enamines and Mesylates $\mathbf{2}^{a}$

| entry | enamine | n | mesylate | R | product | yield $\mathbf{4}(\%)^{b}$ |
| :---: | :---: | :---: | :---: | :--- | :---: | :---: | :---: |
| 1 | $\mathbf{1 b}$ | 1 | $\mathbf{2 a}$ | Bn | $\mathbf{4 a}$ | 60 |
| 2 | $\mathbf{1 b}$ | 1 | $\mathbf{2 b}$ | Me | $\mathbf{4 b}$ | 41 |
| 3 | $\mathbf{1 b}$ | 1 | $\mathbf{2 c}$ | $\mathrm{Ph}\left(\mathrm{CH}_{2}\right)_{2}$ | $\mathbf{4 c}$ | 53 |
| 4 | $\mathbf{1 b}$ | 1 | $\mathbf{2 d}$ | H | $\mathbf{4 d}$ | 40 |
| 5 | $\mathbf{1 c}$ | 2 | $\mathbf{2 a}$ | Bn | $\mathbf{4 e}$ | 50^{c} |
| 6 | $\mathbf{1 c}$ | 2 | $\mathbf{2 b}$ | Me^{d} | $\mathbf{4 f}$ | 30 |
| 7 | $\mathbf{1 c}$ | 2 | $\mathbf{2 c}$ | $\mathrm{Ph}^{d}\left(\mathrm{CH}_{2}\right)_{2}$ | $\mathbf{4 g}$ | 51 |
| 8 | $\mathbf{1 c}$ | 2 | $\mathbf{2 d}$ | $\mathrm{H}^{d, e}$ | $\mathbf{4 h}$ | 39^{f} |

${ }^{a}$ See eq 2. Standard procedure: A solution of $\mathbf{1 b}$ or \mathbf{c} (1.5 equiv) in $\mathrm{CH}_{3} \mathrm{CN}$ was added dropwise to a stirring solution of $\mathbf{2}$ in refluxing $\mathrm{CH}_{3} \mathrm{CN}$. After $0.5 \mathrm{~h}, \mathrm{Et}_{3} \mathrm{~N}$ (1.1 equiv) was added, the reaction was stirred at reflux for an additional 24 h , and then aqueous AcOH was added. After a further 0.5 h at reflux, the reaction was allowed to cool and was subjected to aqueous workup and chromatography. ${ }^{b}$ Isolated yields after chromatography. A single diastereomer was obtained unless otherwise noted. ${ }^{c}$ A ratio of diastereomers (31:1 by ${ }^{1} \mathrm{H}$ NMR integration) was obtained. ${ }^{d} \mathrm{DBU}$ (1,8-diazabicyclo[5.4.0]undec-7-ene) was used in place of $\mathrm{Et}_{3} \mathrm{~N} .{ }^{e}$ The initial step was run at $0{ }^{\circ} \mathrm{C}$ for $1 \mathrm{~h} .{ }^{f}$ A 2:1 ratio of diastereomers was isolated.

Figure 1. Possible diastereomers considered for adduct 4a.
omer. ${ }^{12}$ The reaction appears to be general with six- and sevenmembered pyrrolidine enamines $\mathbf{1 b}, \mathbf{c}$ and mesylates $\mathbf{2 a}-\mathbf{d}$, giving tricycles $\mathbf{4 a}-\mathbf{h}$ in moderate yield (Table 1). ${ }^{13}$ Although 4 or 5 new stereocenters are created in this process, a single diastereomer was obtained in all but two cases.

The determination of the relative stereochemistry for adducts 4 presented a challenge. As shown for $\mathbf{4 a}$ (Figure 1), each pair of bridgehead protons was presumed to have a cis relationship. However, neither the relationship of the C-2/C-6 bridgehead positions to the neighboring methine at $\mathrm{C}-3$ nor that between the $\mathrm{C}-2 / \mathrm{C}-6$ and the $\mathrm{C}-1 / \mathrm{C}-7$ bridgeheads could be easily established. In total, four possible isomers, 4a-ss, 4a-sa, 4aas, and 4a-aa (in which s and a refer to a syn or anti relationship between the $\mathrm{C}-2 / \mathrm{C}-1$ and $\mathrm{C}-3 / \mathrm{C}-2$ methine hydrogens), had to be be considered.

Stereochemical assignments were complicated by the limited chemical shift range in which most of the key methine protons fell in the ${ }^{1} \mathrm{H}$ NMR spectra and by their extensive vicinal and
(12) For a novel photochemical route to the tricyclo[5.3.1.0 ${ }^{2,6}$]undecane skeleton, see: Subrahmanyam, G. In Organic Photochemical Syntheses; Srinivasan, R., Roberts, T. D., Cornelisse, J., Eds.; Wiley: New York, 1976; Vol. 2, pp 99-100.
long-range coupling. To clarify the situation, derivatives of 4 suitable for X-ray crystallography were sought. Treatment of 4a with L-Selectride led to exclusive reduction of the C-4 ketone and furnished keto alcohol 5 as a single, crystalline diastereomer (eq 3). X-ray diffraction analysis confirmed the stereochemistry

shown and established isomer 4a-sa as the correct structure for the $[3+2]$ adduct. This stereochemistry is consistent with the least-hindered antiperiplanar approach of enamine to enone as shown in "open" transition state 6a. A synclinal orientation such as $\mathbf{6 b}$ would also lead to the observed stereochemistry and is consistent with the "closed" transition state proposed for enamine additions to acyclic Michael acceptors. ${ }^{9,14}$ However, severe nonbonding interactions between R and either the cyclohexene or pyrrolidine ring should disfavor this transition state. ${ }^{15}$ The stereochemistry at C-3 is subject to equilibration under the basic conditions and is presumed to be thermodynamically controlled.

Spectral similarities among all tricyclic adducts support an analogous stereochemical relationship for $\mathbf{4 b} \mathbf{- h}$. Isolation of $\mathbf{4 h}$ as a $2: 1$ mixture of diastereomers is surprising. In this case, the absence of a substituent at $\mathrm{C}-5$ may allow the intervention of alternative transition states to $\mathbf{6 a}$. Finally, it should be noted that choice of leaving group in the cyclopentenone partner is critical. Attempted use of 4-bromo-2-cyclopenten-1-one in place of $2 \mathbf{d}$ led to little or none of the tricyclic adducts $\mathbf{4 d}$ and $\mathbf{4 h}$.

We have reported a new reaction which directly joins 4-(mesyloxy)cyclopentenones and pyrrolidine enamines of cyclic ketones in a $[3+2]$ sense, forming two new carbon-carbon bonds and furnishing bridged/fused tricyclic products in a single operation. The reaction typically displays high or complete stereoselectivity. Elaboration of tricyclic adducts 4 to biologically active bicyclic skeletons will be reported elsewhere.

Acknowledgment. We thank the National Institutes of Health for support of this work. F.G.W. thanks the American Cancer Society for a Junior Faculty Research Award, Eli Lilly for a Granteeship, and American Cyanamid for a Cyanamid Faculty Award. The assistance of Dr. Alan Sopchik in obtaining and interpreting high-field NMR data is gratefully acknowledged.

Supporting Information Available: Experimental procedures and physical data for $\mathbf{3 a}-\mathbf{c}, \mathbf{4 a}-\mathbf{h}$, and $\mathbf{5}$ and an ORTEP structure, tables of bond distances, bond angles, positional parameters, and torsion angles for 5 (14 pages). See any current masthead page for ordering and Internet access instructions.

JA963978Y

[^2]
[^0]: \dagger All inquiries regarding X-ray crystallographic data should be directed to this author.
 (1) Reported in preliminary form: Abstracts of Papers, 205th National Meeting of the American Chemical Society, Denver, CO, March 1993; American Chemical Society: Washington, DC, 1993; ORGN 83.
 (2) For a review, see: Petasis, N. A.; Patane, M. A. Tetrahedron 1992, 48, 5757.
 (3) (a) Oh, J.; Lee, J.; Jin, S.; Cha, J. K. Tetrahedron Lett. 1994, 35, 3449. (b) Boeckman, R. K., Jr.; Arvanitis, A.; Voss, M. E. J. Am. Chem. Soc. 1989, 111, 2737. (c) Holton, R. A.; Juo, R. R.; Kim, H. B.; Williams, A. D.; Harusawa, S.; Lowenthal, R. E.; Yogai, S. J. Am. Chem. Soc. 1988, 110, 6558. (d) Hesse, M. Ring Enlargement in Organic Chemistry; VCH: Weinheim, 1991; pp 145-157. (e) Ho, T.-L. Heterolytic Fragmentation of Organic Molecules; Wiley: New York, 1993. (f) Weyerstahl, P.; Marschall, H. In Comprehensive Organic Synthesis; Trost, B. M. Fleming, I.; Eds.; Pergamon: Oxford, 1991; Vol. 6, Chapter 5.4.
 (4) For recent examples of $[3+2]$ routes to cyclopentanoids, see: (a) Lautens, M.; Ren, Y. J. Am. Chem. Soc. 1996, 118, 10668. (b) Holzapfel, C. W.; Vandermerwe, T. L. Tetrahedron Lett. 1996, 37, 2303, 2307. (c) Corlay, H.; Motherwell, W. B.; Pennell, A. M. K.; Shipman, M.; Slawin, A. M. Z.; Williams, D. J.; Binger, P.; Stepp, M. Tetrahedron 1996, 52, 4883. (d) Domon, K. M. K.; Tanino, K.; Kuwajima, I. Synlett 1996, 157. (e) Kuhn, C.; Le Gouadec, G.; Skaltsounis, A. L.; Florent, J.-C. Tetrahedron Lett. 1995, 36, 3137. For reviews, see: (f) Lautens, M.; Klute, W.; Tam, W. Chem. Rev. 1996, 96, 49. (g) Binger, P.; Fox, D. In Methods of Organic Chemistry (Houben Weyl); Georg Thieme Verlag: Stuttgart, 1995; Vol. E 21C, Part D, 1.6.1.2.3, p 2997. (h) Little, R. D. In Comprehensive Organic Synthesis; Trost, B. M., Fleming, I.; Eds.; Pergamon: Oxford, 1991; Vol. 5, Chapter 3.1. (i) Chan, D. M. T. In Comprehensive Organic Synthesis; Trost, B. M., Fleming, I.; Eds.; Pergamon: Oxford, 1991; Vol. 5, Chapter 3.2.
 (5) (a) West, F. G.; Gunawardena, G. U. J. Org. Chem. 1993, 58, 2402. (b) West, F. G.; Gunawardena, G. U. J. Org. Chem. 1993, 58, 5043. (c) For a review of related studies utilizing 4-acetoxycyclopent-2-en-1-one and active methylene nucleophiles, see: Harre, M.; Raddatz, P.; Walenta, R.; Winterfeldt, E. Angew. Chem., Int. Ed. Engl. 1982, 21, 480.
 (6) For reviews, see: (a) Hickmott, P. W. In The Chemistry of Enamines; Rappoport, Z., Ed.; Wiley: Chichester, 1994. (b) Whitesell, J. K.; Whitesell, M. A. Synthesis 1983, 517. (c) Enamines: Synthesis, Structure and Reactions; Cook, A. G., Ed.; Marcel Dekker: New York, 1988.

[^1]: (7) For reviews of stereoselective conjugate additions, see: (a) Leonard, J. Contemp. Org. Synth. 1994, 1, 387. (b) Oare, D. A.; Heathcock, C. H. In Topics in Stereochemistry; Eliel, E. L., Wilen, S. H., Eds.; Wiley: New York, 1991; Vol. 20, p 87.
 (8) (a) Stork, G.; Landesman, H. J. Am. Chem. Soc, 1956, 78, 5129. For other examples of bridged bicycle formation by α, α^{\prime}-functionalization of enamines, see: (b) Hendrickson, J. B.; Boeckman, R. K., Jr. J. Am. Chem. Soc. 1971, 93, 1307. (c) McEuen, J. M.; Nelson, R. P.; Lawton, R. G. J. Org. Chem. 1970, 35, 690. (d) Stetter, H.; Rämsch, K.-D.; Elfert, K. Justus Liebigs Ann. Chem. 1974, 1322.
 (9) For conceptually related [$3+3]$ annulations employing pyrrolidine enamines, see: Seebach, D.; Missbach, M.; Calderari, G.; Eberle, M. J. Am. Chem. Soc. 1990, 112, 7625.
 (10) The Cook-Weiss reaction also proceeds via a $[3+2]$ doubleMichael annulation involving 4-hydroxycyclopentenones. See: Fu, X.; Cook, J. M. Aldrichim. Acta 1992, 25, 43.
 (11) Inclusion of $\mathrm{Et}_{3} \mathrm{~N}$ was not essential for the formation of 4 but did significantly increase the rate at which it was formed and the eventual chemical yield.

[^2]: (13) In contrast to 1b,c, 1-(1-pyrrolidino)cyclopentene gave simple "pseudocine" substitution products analogous to $\mathbf{3}$ in moderate yields and as ca. 1:1 mixtures of diasteromers.
 (14) For example, see: (a) Seebach, D.; Golinski, J. Helv. Chim. Acta 1981, 64, 1413. (b) For a related discussion regarding Michael additions of secondary enamines, see: Pfau, M.; Tomas, A.; Lim, S.; Revial, G. J. Org. Chem. 1995, 60, 1143.
 (15) The relatively polar medium employed in these annulations may also stabilize an open transition state such as $\mathbf{6 a}$ relative to closed transition states.

